

液压泵专业生产厂家-江苏海斯特 Hydraulic Pump Manufacture-Hydstar Hydraulic

Technical Manual 2023

江苏海斯特液压科技有限公司

Jiangsu Hydstar Hydraulic Technology Co., Ltd.

CONTENTS

Piston Pump

Variable Displacement Pump	
A10VSO 31Series	1-48
A10VSO 32 Series	49-120
A10VSO 52/53 Series	121-164
A4VSO Series	164-240
A7VO Series	241-282
A11VO Series	283-346
Piston Motor	
Fixed Motor	
A2FM Series	346-392
A2FE Series	393-416
A10FM/A10FE Series	417-448
Variable Displacement Motor	
A6VM Series	449-616
A6VE Series	617-706
A10VM/A10VE Series	707-750

Axial piston variable motor A10VM Axial piston plug-in motor A10VE Series 52

Data sheet

- Medium pressure motor with two-point control
- Sizes 28 to 85
- Nominal pressure 280 bar
- Maximum pressure 350 bar
- Open and closed circuit

Features

- Variable displacement motor with well-tried A10-rotary unit technology
- Approved for high rotational speeds
- Long service life
- High power density
- Low noise
- Minimum swivel angle can be adjusted externally
- Swashplate design

Contents

Contents		
Type code A10VM	2	1/44
Type code A10VE	4	
Hydraulic fluids	6	
Working pressure range	8	
Technical data	9	
DG – Two-point control, direct operated	11	
HZ/HZ6 – Two-point control, hydraulic	12	
EZ1, EZ2,EZ6, EZ7 - Two-point control, electric	13	
A10VM - Dimensions, size 28 up to 85	14	
A10VE - Dimensions, size 28 up to 63	26	
Flushing and boost-pressure valve	35	
Connector for solenoids	36	
Installation instructions for A10VM	37	
Installation instructions for A10VE	39	
Project planning notes	41	
Safety instructions	42	

Type code A10VM

01		02	03	04		05	06	07		08	09	10	11	12	13	14
A10	v	М			1		W		-	V		С				
xial	pisto	on unit														
01	Swa	shplate	design,	variable,	nominal	pressure	280 bar	, maximı	ım pressure	e 350 ba	ar					A10\
Opera	ating	mode														
			n and clo	osed circu	it											м
Size (NG)															
03		metric	displace	ment, see	table of	values, p	oage 9					28	45	63	85	1
Contr	ol de	evices									•	28	45	63	85	4
04		-point c	ontrol		perated, on/off v	external alve	control	pressure	supply			•	•	•	•	DG
				hydraul			5	witching	time orific	e witho	out	•	•	•	•	нz
				5						with		•	•	•	•	HZ6
				electric	with	<i>U</i> = 12	2 V . s	witching	time orific	e witho	out	•	•	•	•	EZ1
				switchir solenoid	-					with		•	٠	•	•	EZ6
						<i>U</i> = 24	V s	witching	time orific	e witho	out	•	•	•	•	EZ2
										with		•	•	•	•	EZ7
Serie	5													28	- 85	
05	Seri	es 5, in	dex 2												•	52
Direc	tion	of rotat	ion											28	- 85	
06	View	ved on o	drive sha	aft			١	variable							•	w
Minin	num	displac	ement									28	45	63	85	
07	$V_{\rm g\ m}$	_{in} [cm ³]	steples	sly adjust	able ¹⁾		f	rom/to				8/28	12/25	16/38	22/50	1
							f	rom/to				-	26/45	40/62	48/85	2
Sealir	ng m	aterial												28	- 85	
08	FKM	1 (fluoro	elastom	ier)											•	v
Drive	shaf	it														
09	Spli	ned sha	aft simila	ar to			f	or high t	orque			•	٠	•	•	R
	ISO	3019-1					f	or reduc	ed torque			-	٠	•	•	w
Moun	ting	flange												28	- 85	
	-		(SAE); 2	2 hole											•	С

• = Available • = On request - = Not available

1) Please specify exact setting value in plain text.

01	<u> </u>	02	03	04	_,	05	06	07		08	09	10	11	12	13	14
A10	V	М			1		W		-	V		С				
Nork	ing p	port										28	45	63	85	
		nge port ording t	ts to ISO 61	62	A and same s	B on the side,	side,	Metric fast	tening th	iread		•	•	•	•	10N00
					A and	B; at rear	r;	Metric fast	tening th	iread		-	•	-	-	11N00
	1	eaded p ording t	oort to DIN 38	52-1	A and same s	B on the side	,	Threaded p metric	oort			•	•	•	_	16N00
		nge port ording t	ts to ISO 61	62	A and same s	B on the side;	side;	Fastening t	thread U	NF		•	•	•	•	60N00
					A and	B; at rear	r;	Fastening t	thread U	NF		-	•	-	-	61N00
	1	eaded p ording t	oort to ISO 11	926	A and same s	B on the side	,	Threaded p UN	oort			•	•	•	_	66N00
Valves	:S											28	45	63	85	
12	With	hout val	lve									•	•	•	•	0
		-	flushing v working li		s 10N00,	60N00 a	nd 16NC	00, 66N00)				•	•	•	•	7
Speed	d ser	nsing														
13	With	nout sp	eed sens	ing (with	nout symb	ગ્ગ)						•	•	•	•	
Conn	ector	r for so	olenoids													
14	With	nout co	nnector (without	solenoid	, only for	hydraul	lic control)				•	•	•	•	
ſ	DEL!	JTSCH ·	- molded	connect	or. 2-pin	– withou	t suppre	essor diode				•	•	•	•	Р

• = Available • = On request - = Not available

Notice

- Note the project planning notes on page 41.
- In addition to the type code, please specify the relevant technical data when placing your order.

Type code A10VE

01		02	03	04		05	06	07		08	0	9	10	11	12	13	14
A10)V	Е			/	52	W		-	V			F				
xial	pisto	on unit															
01	Swa	shplate	design,	variable, n	omina	l pressure	280 bar	, maximu	m pressu	ıre 350) bar						A10\
opera	ating	mode															
-			-in desig	n, open an	d clos	ed circuits	S										E
Size ((NG)																•
03	For	geomet	ric displa	acement, s	ee tab	le of value	es, page	9						28	45	63	1
Contr	rol de	evices												28	45	63	3
04	Two	-point c	ontrol	direct o	perate	ed, externa	al contro	l pressur	e supply	withou	it on/of	f valv	e	•	•	0	DG
				hydrauli	с			switchi	ng time o	orifice	witho	ut		•	•	•	НZ
											with			•	•	•	HZ6
				electric	U	= 12 V		switchi	ng time o	orifice	witho	ut		•	•	•	EZ1
				with							with						
				switchir solenoid	•									•	•	•	EZ6
				solenoid		= 24 V		switchi	ng time o	rifice	witho	+		•	•	•	EZ2
					U	- 24 V		Switchi	ing time t	mille	with	ut		•	•	•	EZ7
.														•	•	_	
Serie: 05	-	es 5, in	day 2								_					28 63 •	52
																	52
Direc 06	r	of rotat	ion drive sha	£1.				variabl								28 63	w
								variabl	e							•	V
1	r	displac						c 1						28	45	63	<u> </u>
07		_{iin} [cm³] Istable ¹⁾	stepless	sly				from/to						10/28	12/25	16/38	1
	auju	istable ·						from/to)					-	26/45	40/62	2
Sealiı	ng m	aterial														28 63	•
	<u> </u>		elastom	er)												•	v
Drive	shaf	ft												28	45	63	
09	Spli	ned sha	ft simila	r to ISO	fo	r high tor	que							•	•	•	R
	301	9-1			fo	r reduced	torque							-	•	•	w
Moun	nting	flange														28 63	
	· · · ·	-	ge; 2 ho													•	F

• = Available • = On request - = Not available

1) Please specify exact setting value in plain text.

01	02	03	04	·	05	06	07	<u> </u>	08	09	10	11	12	13	14
A10	V E				52	W		-	V		F				
Nork	ing port											28	45	63	
11	Flange por according		62		and B on me side,	the side	, Metric	fastening t	hread			•	•	•	10N00
				A	and B ; at	rear;	Metric	fastening t	hread			-	•	-	11N00
	Threaded according		52-1		and B on me side	the side	; Threade	ed port, m e	etric			•	•	•	16N00
	Flange por according		62		and B on me side;	the side	; Fasteni	ng thread l	JNF			•	•	•	60N00
				Α :	and B ; at	rear;	Fasteni	ng thread l	JNF			-	•	-	61N00
	Threaded according		926		and B on me side	the side	; Threade	ed port, UN	I			•	•	•	66N00
Valve	S											28	45	63	
12	Without va	lve										•	•	•	0
	Integrated (only with	0		5 10N00,	60N00 ar	nd 16N0	0, 66N00)					-	•	•	7
Speed	d sensing														
13	Without sp	eed sens	ing (with	out symt	ool)							•	•	•	
Conn	ector for so	olenoids													
14	Without co	nnector ((without	solenoid	, only for	hydrauli	c control)					•	•	•	
	DEUTSCH	- molded	connecto	or, 2-pin	- without	suppres	ssor diode	е				•	•	•	Р

• = Available • = On request - = Not available

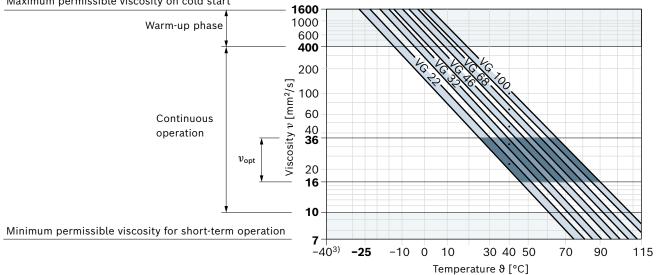
Notice

- Note the project planning notes on page 41.
- In addition to the type code, please specify the relevant technical data when placing your order.

Hydraulic fluids

The variable displacement motor A10VM/A10VE is designed for operation with HLP mineral oil according to DIN 51524. Application instructions and requirements for hydraulic fluids should be taken from the following data sheets before the start of project planning:

- 90220: Hydraulic fluids based on mineral oils and related hydrocarbons
- ▶ 90221: Environmentally acceptable hydraulic fluids


Selection of hydraulic fluid

The hydraulic fluid should be selected so that the operating viscosity in the operating temperature range is within the optimum range (v_{opt} ; see selection diagram).

Viscosity and temperature of hydraulic fluids

	Viscosity	Shaft seal	Temperature ²⁾	Comment
Cold start	ν _{max} ≤ 1600 mm²/s	FKM	θ _{St} ≥ −25°C	$t \le 3$ min, without load ($p \le 30$ bar), $n \le 1000$ rpm Permissible temperature difference between axial piston unit and hydraulic fluid in the system maximum 25 K
Warm-up phase	v = 1600 400 mm²/s			$t \le 15 \text{ min}, p \le 0.7 \times p_{\text{nom}} \text{ and } n \le 0.5 \times n_{\text{nom}}$
Continuous	$v = 400 \dots 10 \text{ mm}^2/\text{s}^{1)}$	FKM	θ ≤ +110°C	Measured at port L_X
operation	$v_{\rm opt}$ = 36 16 mm ² /s			Optimal operating viscosity and efficiency range
Short-term	v _{min} = 10 7 mm²/s	FKM	θ ≤ +110°C	$t \le 1 \text{ min}, p \le 0.3 \times p_{\text{nom}}$, measured at port L_X

Selection diagram

Maximum permissible viscosity on cold start

1) This corresponds, for example on the VG 46, to a temperature range of +4°C to +85°C (see selection diagram)

²⁾ If the temperature at extreme operating parameters cannot be adhered to, please contact us.

³⁾ For applications in the low-temperature range, please contact us.

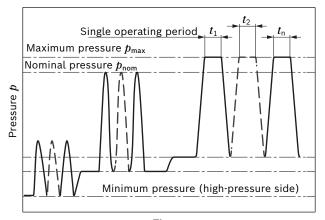
HYDS ΓAR

Filtration of the hydraulic fluid

Finer filtration improves the cleanliness level of the hydraulic fluid, which increases the service life of the axial piston unit.

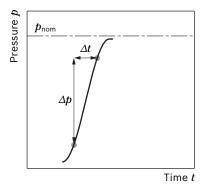
A cleanliness level of at least 20/18/15 under ISO 4406 should be maintained.

At a hydraulic fluid viscosity of less than 10 mm²/s (e.g. due to high temperatures during short-term operation) at the drain port, a cleanliness level of at least 19/17/14 under ISO 4406 is required.


For example, viscosity corresponds to 10 $\rm mm^2/s$ at:

- HLP 32 a temperature of 73 $^{\circ}\mathrm{C}$
- HLP 46 a temperature of 85 $^{\circ}\mathrm{C}$

Working pressure range


Pressure at working port A or B		Definition
Nominal pressure $p_{\sf nom}$	280 bar	The nominal pressure corresponds to the maximum design pressure.
Maximum pressure p_{\max}	350 bar	The maximum pressure corresponds to the maximum working pressure
Single operating period	2.5 ms	within a single operating period. The sum of single operating periods
Total operating period	300 h	must not exceed the total operating period.
Minimum pressure p _{HD absolute} (High-pressure side)	10 bar	Minimum pressure on the high-pressure side (A or B) required to prevent damage to the axial piston unit.
Rate of pressure change $R_{A \max}$	16000 bar/s	Maximum permissible pressure build-up and reduction speed during a pressure change across the entire pressure range.
Pressure at port A or B (low-pre	ssure side)	
Minimum pressure $p_{ m ND\ min}$	2 bar abs.	Minimum pressure on the low-pressure side (A or B) required to prevent damage to the axial piston unit (see diagram, page 9).
Leakage pressure at port L, L ₁		
Maximum static pressure $p_{\rm Lmax}$	2 bar abs.	Maximum 0.5 bar higher than inlet pressure at port A or B , but not higher than $p_{L max}$. A drain line to the reservoir is required.

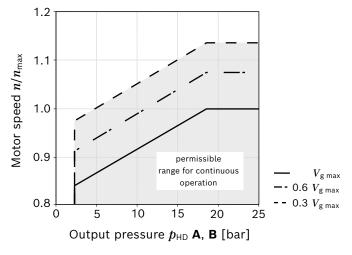
Pressure definition

Time t Total operating period = $t_1 + t_2 + ... + t_n$

• Rate of pressure change $R_{A \max}$

Flow direction

Direction of rotation viewed on drive shaft	clockwise	counter-clockwise
	B to A	A to B


Notice

Working pressure range applies when using hydraulic fluids based on mineral oils. Please contact us for values for other hydraulic fluids.

Technical data

Size		NG		28	45	63	85
Displacement geometric, per re	volution	$V_{\rm g\ max}$	cm ³	28	45	62	87
		V_{gmin}^{*})	cm ³	8(VM) 10(VE)	12	16	22
Maximum rotational speed ¹⁾²⁾	at $V_{g max}$	$n_{\sf nom}$	rpm	4700	4000	3300	3100
	at $V_{g \min}$	$n_{ m max\ perm}$	rpm	5400	4600	3900	3560
Minimum rotational speed Continuous operation	at $V_{g max}$	n_{\min}	rpm	250	250	250	250
Inlet flow	at $n_{ m nom}$ and $V_{ m gmax}$	$q_{ m vmax}$	l/min	131.6	180	205	270
Torque	at $V_{ m gmax}$ and $p_{ m N}$ = 280 bar	$M_{\sf max}$	Nm	125	200	276	387
Actual starting torque, approx.	at n = 0 rpm and $p_{ m N}$ = 280 bar	M	Nm	92	149	205	253
Rotary stiffness	R	с	Nm/rad	2600	41000	69400	152900
Drive shaft	W	с	Nm/rad	19800	34400	54000	117900
Moment of inertia of the rotary	group	J_{TW}	kgm²	0.0017	0.0033	0.0056	0,012
Maximum angular acceleration ³³)	α	rad/s²	5500	4000	3300	2700
Case volume		V	ι	0.6	0.7	0.8	1.0
Weight approx.		m	kg	14	18	26	34

Permissible motor speed depending on output pressure (low pressure)

Notice

- Theoretical values, without efficiency and tolerances; values rounded
- Operation above the maximum values or below the minimum values may result in a loss of function, a reduced service life or in the destruction of the axial piston unit. We recommend checking loads through tests or calculation/simulation and comparing them with the permissible values.
- Setting of minimum displacement*): The minimum displacement can be steplessly adjusted within the ranges (or screw length) of type code position 1 or 2.

Please specify minimum displacement in plain text.

For formulas to determine the characteristics, see page 10

1) The values are applicable:

- for the optimum viscosity range from v_{opt} = 36 to 16 mm²/s
- with hydraulic fluid based on mineral oils
- $_{\rm 2)}\,$ The maximum rotational speed depends on the output pressure at the working port ${\bf A}\,\,({\bf B})\,\,({\rm see}\,\,{\rm diagram}).$

³⁾ The data are valid for values between the minimum required And maximum permissible rotational speed. Valid for external excitation (e.g. diesel engine 2 to 8 times rotary frequency; cardan shaft twice the rotary frequency). The limit value is only valid for a single pump. The load capacity of the connection parts must be considered.

Working pressure range

Deter	minat	ion of the characteristics	
Flow		$q_{\rm v} = \frac{V_{\rm g} \times n}{1000 \times \eta_{\rm v}}$	[l/min]
Torqu	e	$M = \frac{1.59 \times V_{\rm g} \times \Delta p \times \eta_{\rm hm}}{100}$	[Nm]
Powe	r	$P = \frac{2 \pi \times M \times n}{60000} = \frac{q_v \times \Delta p \times n}{600}$	^ŋ t [kW]
Outpu speed		$n = \frac{q_{\rm v} \times 1000 \times \eta_{\rm v}}{V_{\rm g}}$	[rpm]
Key			
$V_{\sf g}$	=	Displacement per revolution [cm ³]	
Δp	=	Differential pressure [bar]	
n	=	Rotational speed [rpm]	
η_{v}	=	Volumetric efficiency	
$\eta_{ m hm}$	=	Hydraulic-mechanical efficiency	
$\eta_{ m t}$	=	Total efficiency ($\eta_{ extsf{t}}$ = $\eta_{ extsf{v}}$ $ imes$ $\eta_{ extsf{hm}}$)	

Permissible radial and axial loading on the drive shafts

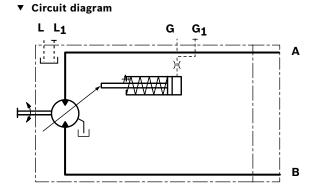
Size	NG	28	45	63	85	
Radial force maximum at X/2	F _{q max} N	1200	1500	1700	2000	
Axial force maximum	± F _{ax max} N	1000	1500	2000	3000	

Notice

The specified values are maximum values and must not be exceeded in continuous operation. For radial and axial loading, please contact us.

DG - Two-point control, direct operated

The variable displacement motor is set to minimum swivel angle by connecting an external switching pressure to port $G(G_1)$.


This will supply control fluid directly to the stroking piston; a minimum control pressure of $p_{st} \ge 40$ bar is required. The variable displacement motor can only be switched between $V_{g max}$ or $V_{g min}$. $V_{g min}$ Please specify the pre-setting in plain text.

Please note that the required switching pressure at port **G** (**G**₁) is directly dependent on the actual working pressure $p_{\rm B}$ in port **A** or **B**. (see switching pressure characteristic curve).

The maximum permissible switching pressure is 280 bar.

- Switching pressure p_{st} in **G** (**G**₁) = 0 bar $\Delta V_{g max}$
- ▶ Switching pressure p_{st} in **G** (**G**₁) ≥ 40 bar $\triangleq V_{g \min}$

▼ Switching pressure characteristic curve

 140
 permissible

 120
 permissible

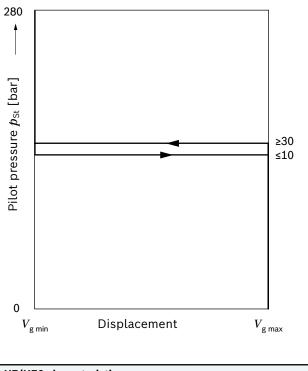
 100
 range

 50
 50

 40
 70
 140
 210
 280

 Working pressure p_B [bar]

HZ/HZ6 - Two-point control, hydraulic


The variable motor is set to minimum swivel angle by connecting the pilot pressure p_X to port **X** ($p_X \ge 30$ bar). This supplies the stroking piston with control pressure via the on/off valve.

The control pressure is taken internally from the relevant high-pressure side; a minimum working pressure difference of $\Delta p_{A,B} \ge 30$ bar is required.

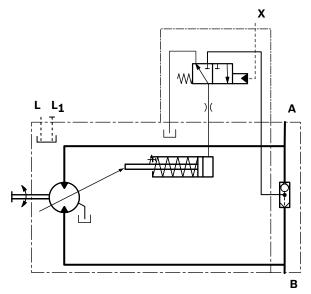
The motor can only be switched between $V_{\rm g\,max}$ or $V_{\rm g\,min}$. $V_{\rm g\,min}$ - pre-setting for order please state in plain text.

Pilot pressure $p_X \le 10$ bar $\triangle V_{g max}$ Pilot pressure $p_X \ge 30$ bar $\triangle V_{g min}$

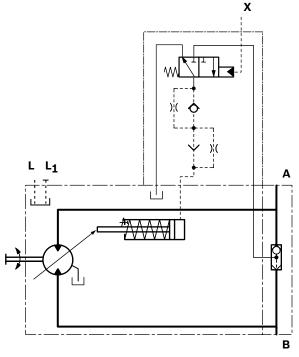
▼ HZ/HZ6 characteristic curve

30 bar
280 bar

Version HZ6 with orifice for the switching time extension


The switching process is delayed by an orifice.

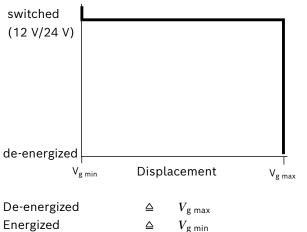
This allows for damped switching.


Standard orifice diameter is 0.25 mm.

Other orifice diameters upon request.

HZ circuit diagram

HZ6 circuit diagram



EZ1, EZ2, EZ6, EZ7 - Two-point control, electric

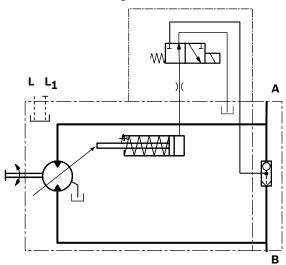
The variable displacement motor is set to minimum swivel angle by actuating the switching solenoid. This supplies the stroking piston with control pressure via the on/off valve. The control pressure is taken internally from the relevant high-pressure side; a minimum working pressure difference of $\Delta p_{A,B} \ge 30$ bar is required.

The motor can only be switched between $V_{\rm g\ max}$ or $V_{\rm g\ min}$. $V_{\rm g\ min}$ - pre-setting for order please state in plain text.

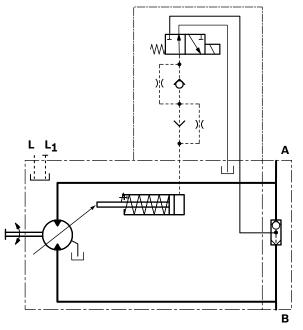
Solenoid technical data	EZ1/EZ6	EZ2/EZ7	
Nominal voltage	12V DC ±15%	24V DC ±15%	
Nominal current at 20 °C	1.5 A	0.8 A	
Duty cycle	100%	100%	
Type of protection of device connector	see connector for solenoids on page 36		
Ambient temperature	-20 °C to +60 °C		
Hydraulic fluid temperature	-20 °C to +100 °C		
Viscosity range at continuous operation	10 mm²/s to 42	0mm ² /s ¹⁾	

Please contact us if the temperature and viscosity ranges cannot be complied with.

EZ6/EZ7 version with orifice for switching time extension


The switching process is delayed by an orifice.

This allows for damped switching.


Standard orifice diameter is 0.25 mm.

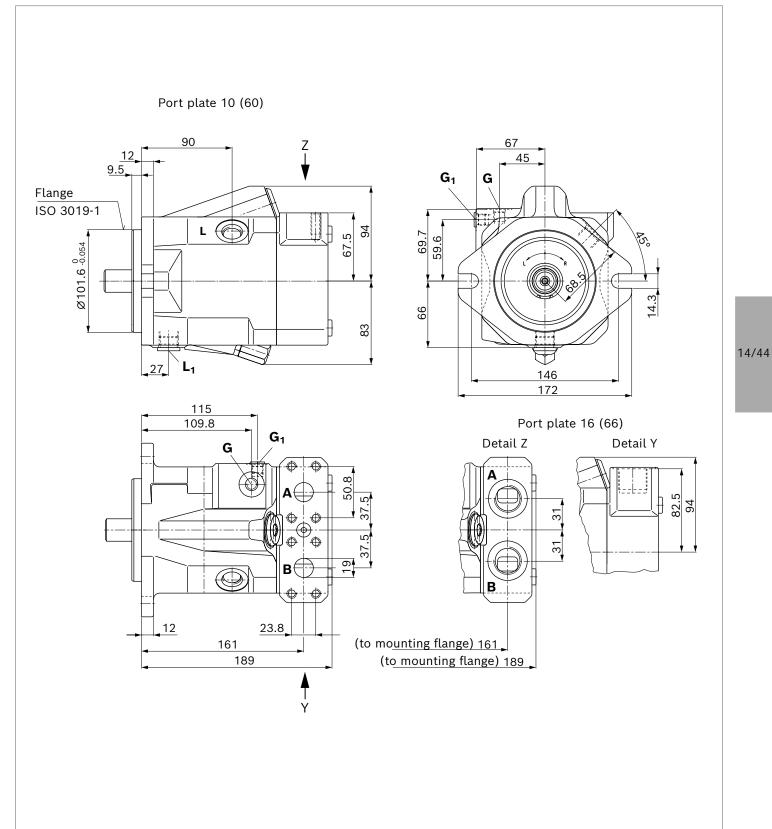
Other orifice diameters upon request.

▼ EZ1/EZ2 circuit diagram

EZ6/EZ7 circuit diagram

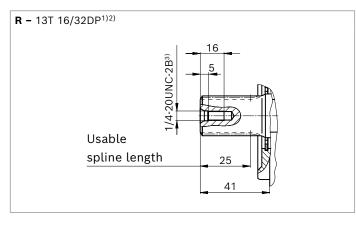
13/44

1) In the range between 420 mm²/s and 1600 mm²/s only limited function


HYDS AR

A10VM/E Series

A10VM - Dimensions, size 28


DG - Two-point control, direct operated

Port plate 10 (60) and 16 (66) N000

▼ Splined shaft 7/8 in (similar to ISO 3019-1)

Port pl	ate ports	Standard	Size	p_{\max} [bar] ⁴⁾	State ⁷⁾	
Port pl	ate 10					-
А, В	Working port (high-pressure series) Fastening thread	ISO 6162-2 DIN 13	3/4 in M10×1.5; 17 deep	350	0	
Port pl	ate 60					-
А, В	Working port (high-pressure series) Fastening thread	ISO 6162-2 ASME B1.1	3/4 in 3/8-16UNC-2B; 21 deep	350	Ο	_
Port pl	ate 16					
A, B	Working port	DIN 3852-1	M27 × 2; 16 deep	350	0	
Port pl	ate 66					15/
А, В	Working port	ISO 11926	1 1/16-12UN-2B; 20 deep	350	0	137
Other p	ports					
L	Drain port	ISO 11926 ⁵⁾	3/4-16UNF-2B; 15 deep	4	O ⁶⁾	
L ₁	Drain port	ISO 11926 ⁵⁾	3/4-16UNF-2B; 15 deep	4	X ₆)	_
G	External control pressure (with DG control)	ISO 11926 ⁵⁾	7/16-20UNF-2B; 12 deep	350	0	
\mathbf{G}_1	External control pressure (with DG control)	ISO 11926 ⁵⁾	7/16-20UNF-2B; 12 deep	350	Х	-
х	Pilot pressure (with HZ control)	ISO 11926	7/16-20UNF-2B; 12 deep	350	0	_

 Involute spline according to ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5

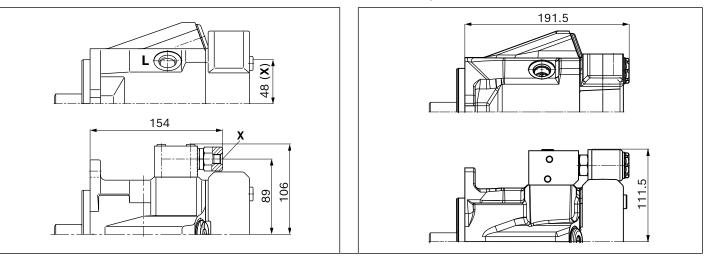
2) Spline runout is a deviation from the ISO 3019-1 standard.

3) Thread according to ASME B1.1

4) Depending on the application, momentary pressure peaks can occur. Keep this in mind when selecting measuring devices and fittings.

 $\ensuremath{\scriptscriptstyle 5}\xspace$ The countersink can be deeper than specified in the standard.

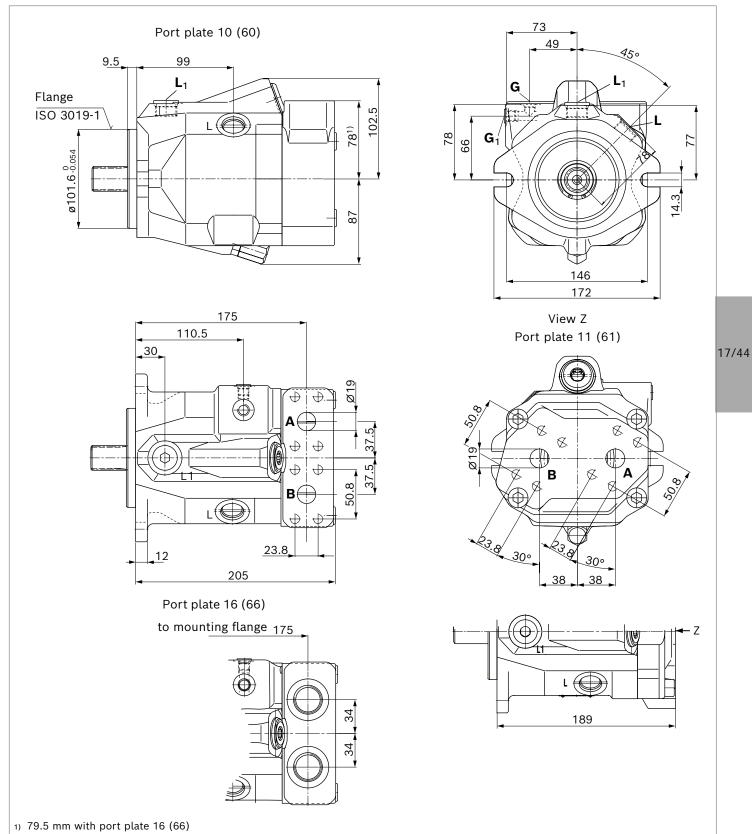
- Depending on the installation position, L or L₁ must be connected (see also installation instructions on pages 37 and 38).
- 7) O = Must be connected (plugged on delivery)


X = Plugged (in normal operation)

Dimensions [mm]

▼ HZ, HZ6 – Two-point control, hydraulic

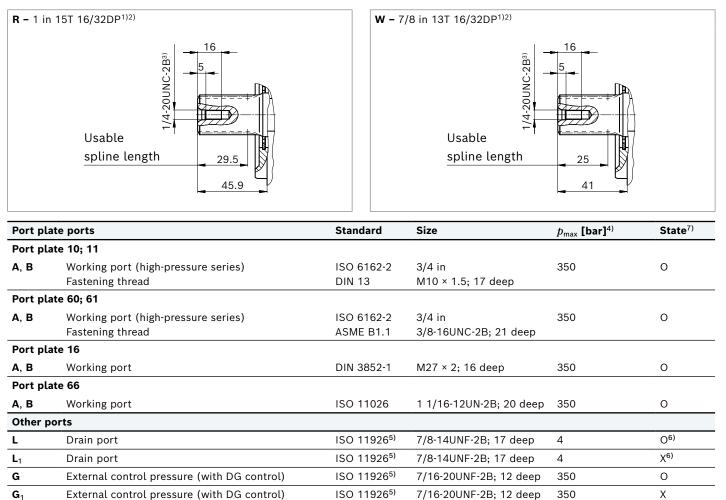
▼ EZx - Two-point control, electric



A10VM - Dimensions, size 45

DG - Two-point control, direct operated

Port plate 10 (60), 16 (66) and 11 (61) N000



Х

A10VM/E Series

Dimensions [mm]

Splined shaft (similar to ISO 3019-1)

ISO 11926

1) Involute spline according to ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5

2) Spline runout is a deviation from the ISO 3019-1 standard.

Pilot pressure (with HZ control)

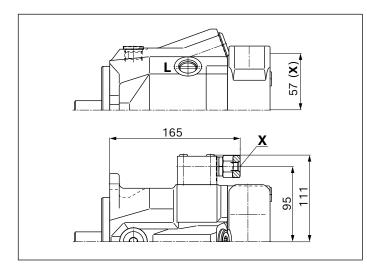
3) Thread according to ASME B1.1

4) Depending on the application, momentary pressure peaks can occur. Keep this in mind when selecting measuring devices and fittings.

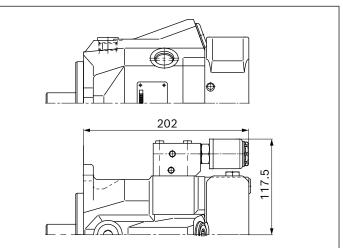
- 5) The countersink can be deeper than specified in the standard.
- Depending on the installation position, L or L₁ must be connected (see also installation instructions on pages 37 and 38).

350

0

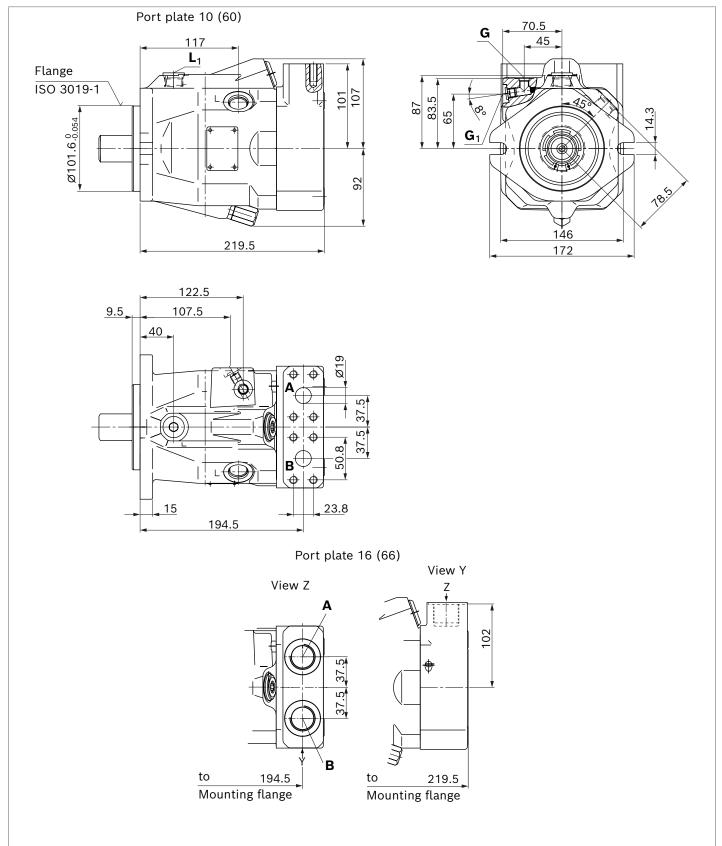

7) O = Must be connected (plugged on delivery)

7/16-20UNF-2B; 12 deep


X = Plugged (in normal operation)

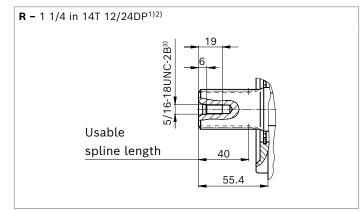
▼ HZ, HZ6 - Two-point control, hydraulic

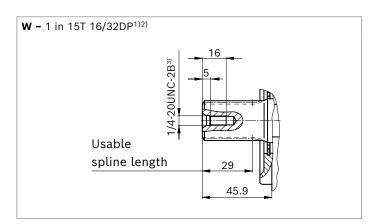
▼ **EZx** – Two-point control, electric, Port plate 16 (66)



20/44

A10VM - Dimensions, size 63


DG - Two-point control, direct operated

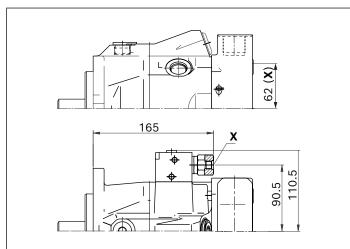

Port plate 10 (60) and 16 (66)N000

Splined shaft (similar to ISO 3019-1)

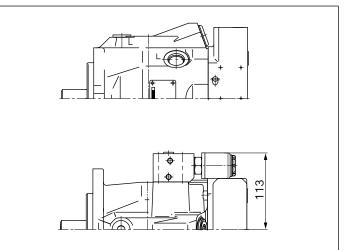
Port pl	ate ports	Standard	Size	p_{\max} [bar] ⁴⁾	State ⁷⁾
Port pl	ate 10				
А, В	Working port (high-pressure series) Fastening thread	ISO 6162-2 DIN 13	3/4 in M10 × 1.5; 17 deep	350	0
Port pl	ate 60				
Α, Β	Working port (high-pressure series) Fastening thread	ISO 6162-2 ASME B1.1	3/4 in 3/8-16UNC-2B; 21 deep	350	0
Port pl	ate 16				
A , B	Working port	DIN 3852-1	M27 × 2; 16 deep	350	0
Port pl	ate 66				2
А, В	Working port	ISO 11926	1 1/16-12UN-2B; 20 deep	350	0
Other p	ports				
L	Drain port	ISO 11926 ⁵⁾	7/8-14UNF-2B; 17 deep	4	O ⁶⁾
L ₁	Drain port	ISO 11926 ⁵⁾	7/8-14UNF-2B; 17 deep	4	X ₆)
G	External control pressure (with DG control)	ISO 11926 ⁵⁾	7/16-20UNF-2B; 12 deep	350	0
G ₁	External control pressure (with DG control)	ISO 11926 ⁵⁾	7/16-20UNF-2B; 12 deep	350	X
x	Pilot pressure (with HZ control)	ISO 11926	7/16-20UNF-2B; 12 deep	350	0

 Involute spline according to ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5

2) Spline runout is a deviation from the ISO 3019-1 standard.


3) Thread according to ASME B1.1

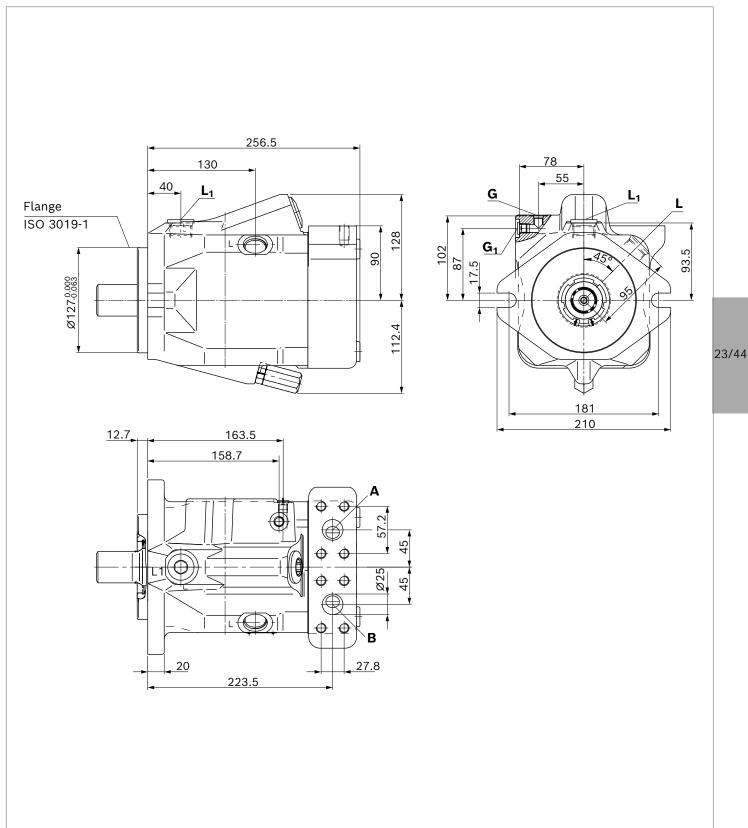
- Depending on the application, momentary pressure peaks can occur. Keep this in mind when selecting measuring devices and fittings.
- 5) The countersink can be deeper than specified in the standard.
- Depending on the installation position, L or L₁ must be connected (see also installation instructions on pages 37 and 38).
- 7) O = Must be connected (plugged on delivery)
 - X = Plugged (in normal operation)



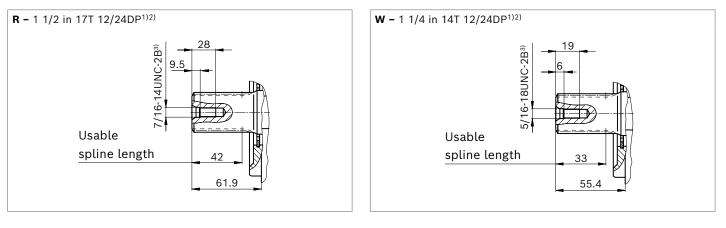
Dimensions [mm]

▼ HZ, HZ6 – Two-point control, hydraulic

▼ EZx - Two-point control, electric



A10VM - Dimensions, size 85


DG - Two-point control, direct operated

Port plate 10 (60) N000

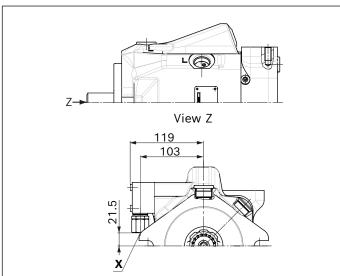
▼ Splined shaft (similar to ISO 3019-1)

Port pl	ate ports	Standard	Size	$p_{\sf max}$ [bar] $^{4)}$	State ⁷⁾
Port plate 10					
A , B	Working port (high-pressure series) Fastening thread	ISO 6162-2 DIN 13	1 in M12 × 1.75; 17 deep	350	Ο
Port pl	ate 60		•		
Α, Β	Working port (high-pressure series) Fastening thread	ISO 6162-2 ASME B1.1	1 in 7/16-14UNC-2B; 22 deep	350	0
Other p	ports				
L	Drain port	ISO 11926 ⁵⁾	1 1/16-12UNF-2B; 20 deep	4	O ⁶⁾
L ₁	Drain port	ISO 11926 ⁵⁾	1 1/16-12UNF-2B; 20 deep	4	X ⁶⁾
G	External control pressure (with DG control)	ISO 11926 ⁵⁾	7/16-20UNF-2B; 12 deep	350	0
G ₁	External control pressure (with DG control)	ISO 11926 ⁵⁾	7/16-20UNF-2B; 12 deep	350	Х
Х	Pilot pressure (with HZ control)	ISO 11926	7/16-20UNF-2B; 10 deep	350	0

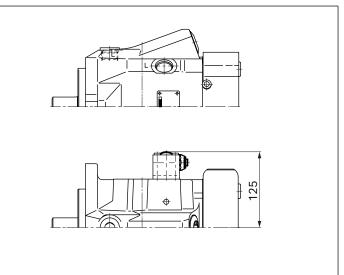
 Involute spline according to ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5

2) Spline runout is a deviation from the ISO 3019-1 standard.

3) Thread according to ASME B1.1

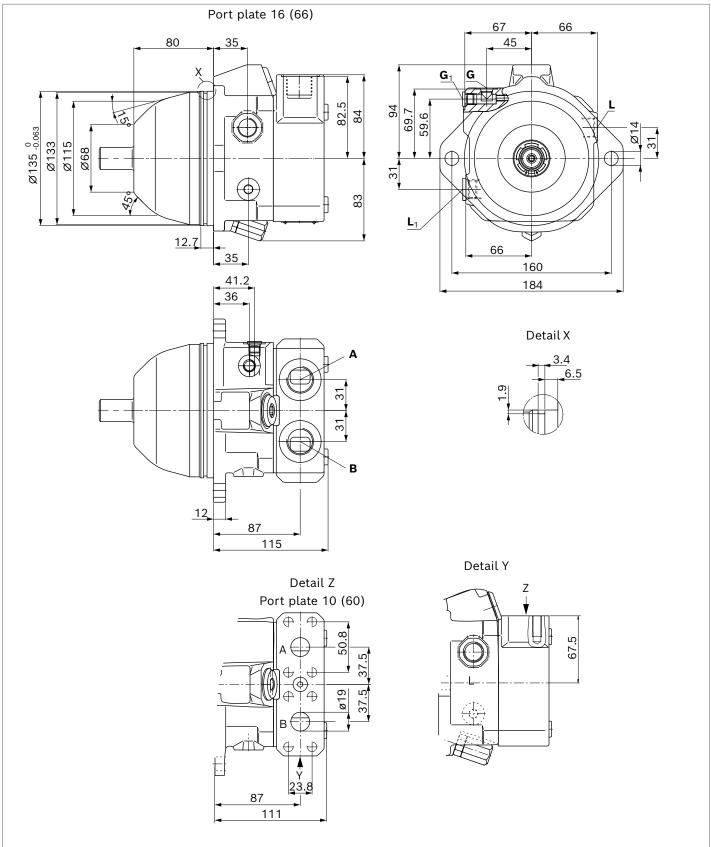

 Depending on the application, momentary pressure peaks can occur. Keep this in mind when selecting measuring devices and fittings.

- 5) The countersink can be deeper than specified in the standard.
- 6) Depending on the installation position, L or L₁ must be connected (see also installation instructions on pages 37 and 38).
- 7) O = Must be connected (plugged on delivery)X = Plugged (in normal operation)



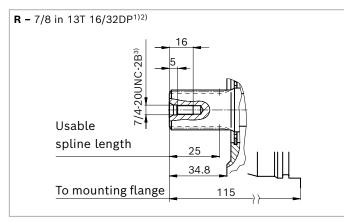
A10VM - Dimensions, size 85

▼ HZ, HZ6 - Two-point control, hydraulic



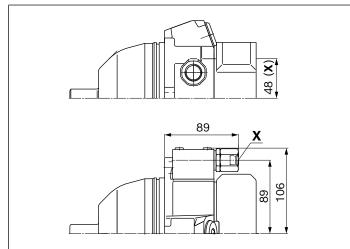
▼ EZx - Two-point control, electric

DG – Two-point control, direct operated

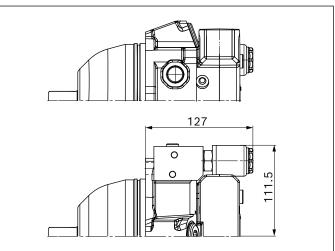

Port plate 10 (60) and 16 (66)N000

732

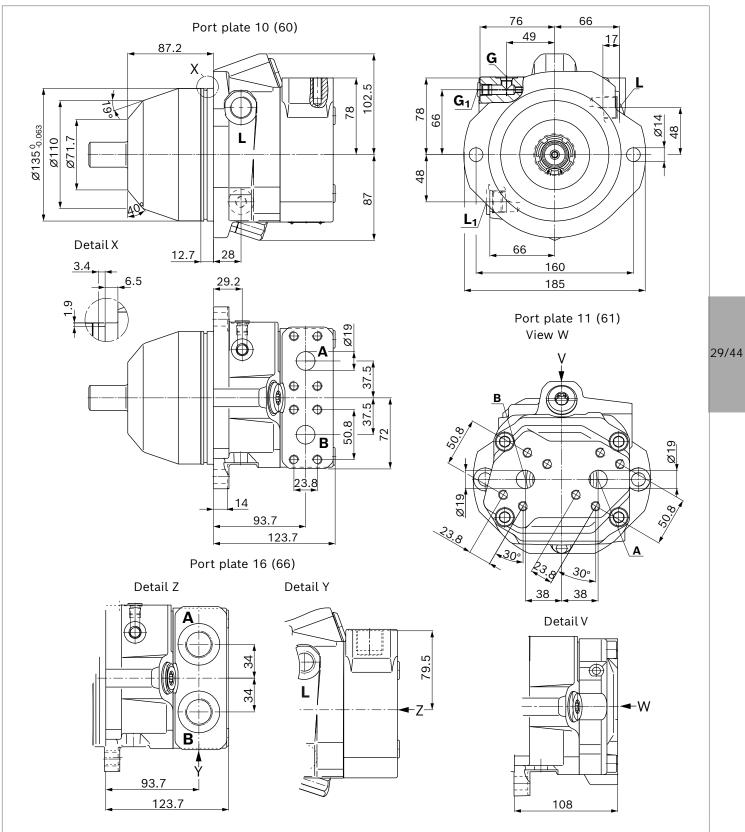
Splined shaft (similar to ISO 3019-1)



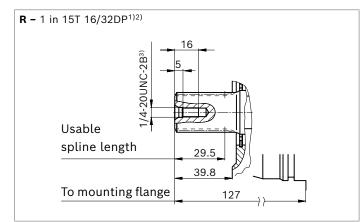
Port pl	ate ports	Standard	Size	p_{\max} [bar] ⁴⁾	State ⁷⁾	
Port pl	ate 10					-
Α, Β	Working port (high-pressure series) Fastening thread	ISO 6162-2 DIN 13	3/4 in M10 × 1.5; 17 deep	350	0	
Port pl	ate 60					-
А, В	Working port (high-pressure series) Fastening thread	ISO 6162-2 ASME B1.1	3/4 in 3/8-16UNC-2B; 21 deep	350	Ο	
Port pl	ate 16					
A , B	Working port	DIN 3852-1	M27 × 2; 16 deep	350	0	
Port pl	ate 66					27/
A , B	Working port	ISO 11926	1 1/16-12UN-2B; 20 deep	350	0	
Other p	ports					
L	Drain port	ISO 11926 ⁵⁾	3/4-16UNF-2B; 15 deep	4	O ⁶⁾	
L ₁	Drain port	ISO 11926 ⁵⁾	3/4-16UNF-2B; 15 deep	4	X ₆₎	-
G	External control pressure (with DG control)	ISO 11926 ⁵⁾	7/16-20UNF-2B; 12 deep	350	0	-
G ₁	External control pressure (with DG control)	ISO 11926 ⁵⁾	7/16-20UNF-2B; 12 deep	350	Х	-
Х	Pilot pressure (with HZ control)	ISO 11926	7/16-20UNF-2B; 12 deep	350	0	-
						-

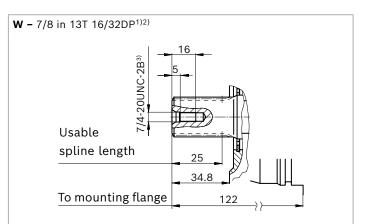

- Involute spline according to ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5
- 2) Spline runout is a deviation from the ISO 3019-1 standard.
- 3) Thread according to ASME B1.1
- Depending on the application, momentary pressure peaks can occur. Keep this in mind when selecting measuring devices and fittings.
- $\ensuremath{\scriptscriptstyle 5}\xspace$ The countersink can be deeper than specified in the standard.
- 6) Depending on the installation position, L or L₁ must be connected (see also installation instructions on pages 37 and 38).
- 7) O = Must be connected (plugged on delivery)X = Plugged (in normal operation)

▼ HZ, HZ6 - Two-point control, electric



▼ EZx - Two-point control, electric


DG - Two-point control, direct operated

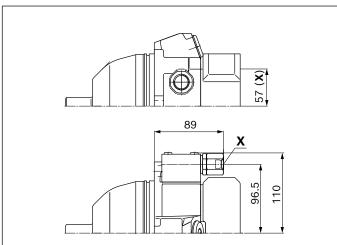

Port plate 10 (60), 11 (61) and 16 (66)N000

Splined shaft (similar to ISO 3019-1)

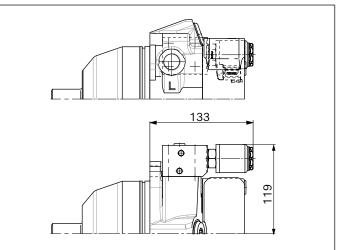
Port pl	ate ports	Standard	Size	$p_{\sf max}$ [bar] $^{4)}$	State ⁷⁾	
Port pl	ate 10; 11					-
A , B	Working port (high-pressure series) Fastening thread	ISO 6162-2 DIN 13	3/4 in M10 × 1.5; 17 deep	350	Ο	
Port pl	ate 60; 61					-
А, В	Working port (high-pressure series) Fastening thread	ISO 6162-2 ASME B1.1	3/4 in 3/8-16UNC-2B; 21 deep	350	Ο	
Port pl	ate 16					
A , B	Working port	DIN 3852-1	M27 × 2; 16 deep	350	0	
Port pl	ate 66					30/
A , B	Working port	ISO 11926	1 1/16-12UN-2B; 20 deep	350	0	
Other p	ports					
L	Drain port	ISO 11926 ⁵⁾	7/8-14UNF-2B; 17 deep	4	O ⁶⁾	-
L ₁	Drain port	ISO 11926 ⁵⁾	7/8-14UNF-2B; 17 deep	4	X ₆)	-
G	External control pressure (with DG control)	ISO 11926 ⁵⁾	7/16-20UNF-2B; 12 deep	350	0	-
\mathbf{G}_1	External control pressure (with DG control)	ISO 11926 ⁵⁾	7/16-20UNF-2B; 12 deep	350	Х	-
Х	Pilot pressure (with HZ control)	ISO 11926	7/16-20UNF-2B; 12 deep	350	0	-
						-

 Involute spline according to ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5

2) Spline runout is a deviation from the ISO 3019-1 standard.

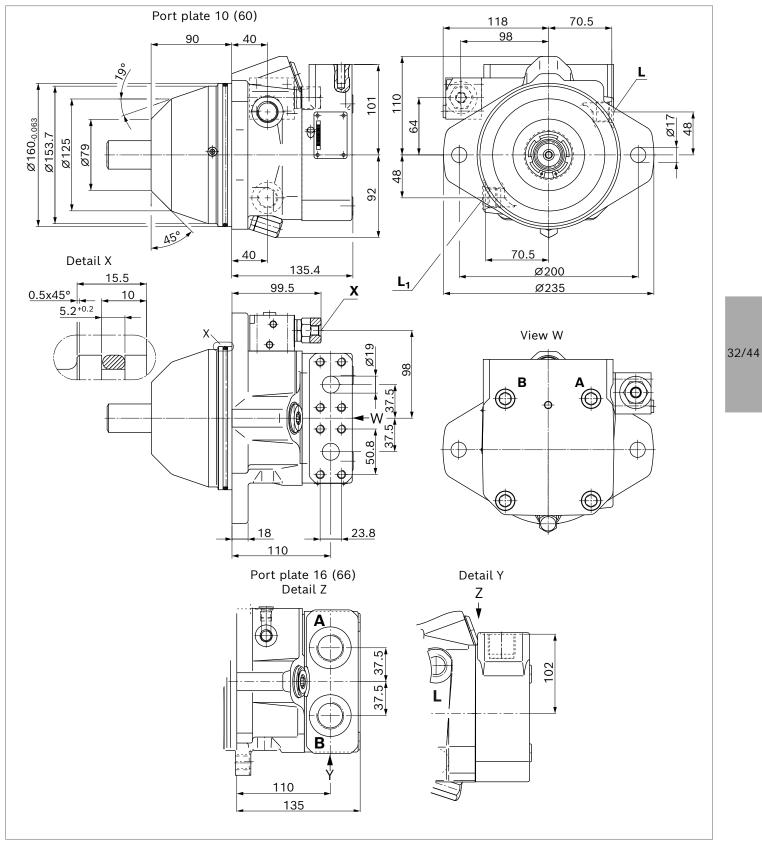

3) Thread according to ASME B1.1

- Depending on the application, momentary pressure peaks can occur. Keep this in mind when selecting measuring devices and fittings.
- 5) The countersink can be deeper than specified in the standard.
- Depending on the installation position, L or L₁ must be connected (see also installation instructions on pages 37 and 38).
- 7) O = Must be connected (plugged on delivery)
 - X = Plugged (in normal operation)



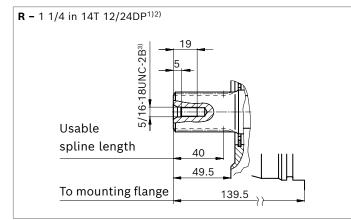
A10VE - Dimensions, size 45

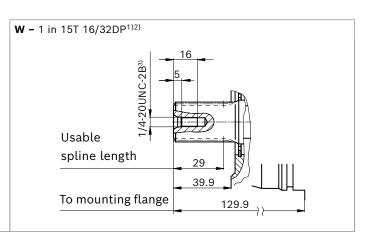
▼ HZ, HZ6 - Two-point control, electric


▼ EZx - Two-point control, electric

A10VE - dimensions, size 63

HZ, HZ6 - Two-point control, electric


Port plate 10 (60) and 16 (66)N000



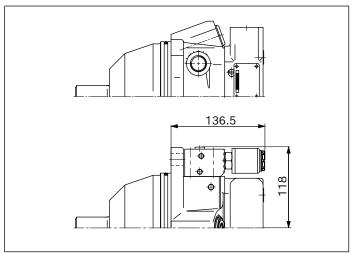
A10VE - dimensions, size 63

Splined shaft (similar to ISO 3019-1)

Port pl	ate ports	Standard	Size	$p_{\sf max}$ [bar] $^{4)}$	State ⁷⁾	
Port pl	ate 10					-
A , B	Working port (high-pressure series)	ISO 6162-2	3/4 in	350	0	
	Fastening thread	DIN 13	M10 × 1.5; 17 deep			
Port pl	ate 60					
A , B	Working port (high-pressure series)	ISO 6162-2	3/4 in	350	0	
	Fastening thread	ASME B1.1	3/8-16UNC-2B; 21 deep			
Port pl	ate 16					
A , B	Working port	DIN 3852-1	M27 × 2; 16 deep	350	0	
Port pl	ate 66					33/
A , B	Working port	ISO 11926	1 1/16-12UN-2B; 20 deep	350	0	
Other p	ports	·				
L	Drain port	ISO 11926 ⁵⁾	7/8-14UNF-2B; 17 deep	4	O ⁶⁾	
L ₁	Drain port	ISO 11926 ⁵⁾	7/8-14UNF-2B; 17 deep	4	X ⁶⁾	_
х	Pilot pressure	ISO 11926	7/16-20UNF-2B; 12 deep	350	0	_

1) Involute spline according to ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5

2) Spline runout is a deviation from the ISO 3019-1 standard.


3) Thread according to ASME B1.1

- Depending on the application, momentary pressure peaks can occur. Keep this in mind when selecting measuring devices and fittings.
- 5) The countersink can be deeper than specified in the standard.
- Depending on the installation position, L or L₁ must be connected (see also installation instructions on pages 37 and 38).
- 7) O = Must be connected (plugged on delivery)
 - X = Plugged (in normal operation)

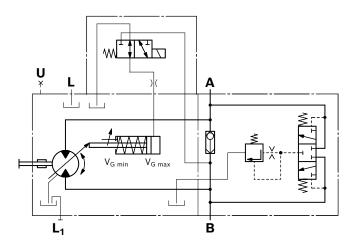
A10VE - dimensions, size 63

▼ EZx - Two-point control, electric

Flushing and boost-pressure valve

Order option ... N007

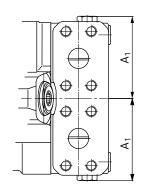
The flushing and boost-pressure valve is used in a closed circuit to prevent increased heat and to protect the minimum boost pressure (set to 16 bar). The valve is integrated in the port plate.

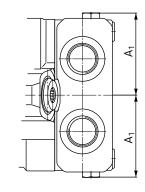

A quantity of hydraulic fluid determined by an orifice is taken from the respective low-pressure side and discharged into the motor housing. Together with the leakage, it is discharged to the reservoir via the drain port. The hydraulic fluid removed from the circuit must be replaced by the boost pump with cooled hydraulic fluid.

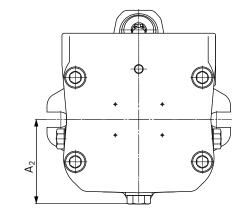
Standard flushing flows

At low pressure $p_{\rm ND}$ = 20 bar and orifice of Ø1.6 mm, the standard flushing quantity is 5.5 l/min (sizes 28 - 85). Please specify other orifice diameters in plain text. Other flushing flows:

Orifice diameter [mm]	Flushing flow [l/min]
1.2	3.5
1.6	5.5
1.8	7.2


Circuit diagram




▼ Dimensions A10VM and A10VE.

Port plate 10 (60)

Port plate 16 (66)

Size	A ₁	A ₂	
28	72	72	
45	77	77	
63	77	82	
85	_	_	

Connector for solenoids

DEUTSCH DT04-2P-EP04

Molded, 2-pin, without bidirectional suppressor diode The installed mating connector has the following type of protection:

- ▶ IP67 (DIN/EN 60529) and
- ► IP69K (DIN 40050-9)

Switching symbol

▼ Mating connector DEUTSCH DT06-2S-EP04

Consisting of	DT designation
1 housing	DT06-2S-EP04
1 wedge	W2S
2 sockets	0462-201-16141

The mating connector is not included in the scope of delivery.

Notice

If necessary, you can change the position of the connector by turning the solenoid body.

The procedure is defined in the instruction manual manual.

Installation instructions for A10VM

General

The axial piston unit must be filled with hydraulic fluid and air bled during commissioning and operation. This must also be observed following a longer standstill as the axial piston unit may empty via the hydraulic lines. Please contact us regarding the installation position "drive shaft at top or bottom".

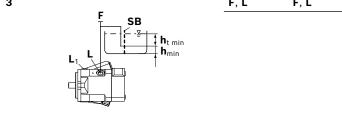
The leakage in the housing area must be directed to the reservoir via the highest positioned drain port (L, L_1) . If a shared drain line is used for several units, make sure that the respective case pressure in each unit is not exceeded. The shared drain line must be dimensioned to ensure that the maximum permissible case pressure of all connected units is not exceeded in any operating condition, particularly at cold start. If this is not possible, separate drain line must be laid, if necessary.

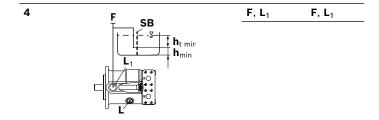
To achieve favorable noise values, decouple all connecting lines using elastic elements and avoid above-reservoir installation.

In all operating conditions, the drain line must flow into the reservoir below the minimum fluid level.

Notice

In certain installation positions, an influence on the adjustment or control can be expected. Gravity, dead weight and case pressure can cause minor characteristic shifts and changes in actuating time. Connector for solenoids

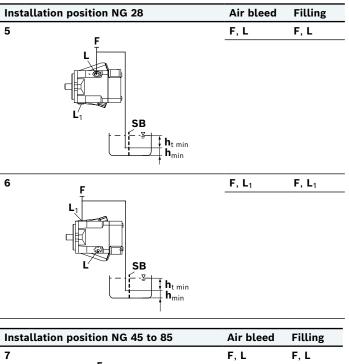

Installation position

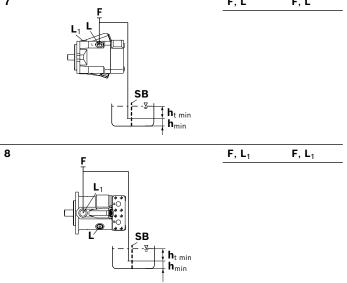

See the following examples **1** to **8**. Further installation positions are available upon request. Recommended installation position: **1**, **3**, **5** and **7**

Below-reservoir installation (standard)

Below-reservoir installation means that the axial piston unit is installed outside of the reservoir below the minimum fluid level.

Installation position A10VM, NG 28	Air bleed	Filling
1	F, L	F, L
F SB ht mir hmin L		
2 F cp	F , L ₁	F , L ₁
SB ht min hmin hmin		
Installation position A10VM, NG 45 to 85	Air bleed	Filling
3	F, L	F, L





Key		
F	Filling / Air bleeding	
L, L ₁	Drain port	
SB	Baffle (baffle plate)	
h _{t min}	Minimum required immersion depth (200 mm)	
h _{min}	Minimum required distance to reservoir bottom (100 mm)	

Above-reservoir installation

Above-reservoir installation means that the axial piston unit is installed above the minimum fluid level of the reservoir.

Notice

Port **F** is part of the external piping and must be provided on the customer side to make filling and air bleeding easier.

Installation instructions for A10VE

General

The axial piston unit must be filled with hydraulic fluid and air bled during commissioning and operation. This must also be observed following a longer standstill as the axial piston unit may empty via the hydraulic lines.

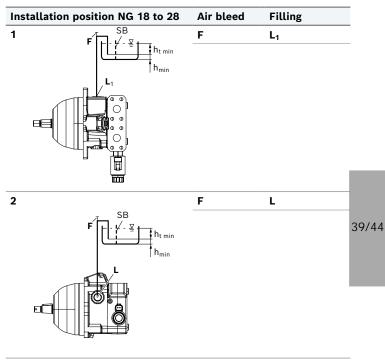
Please contact us regarding the installation position "drive shaft at top or bottom".

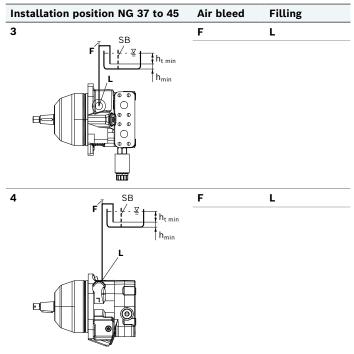
The leakage in the housing area must be directed to the reservoir via the highest available drain port (L). If this is not possible, separate drain line must be laid, if necessary. To achieve favorable noise values, decouple all connecting lines using elastic elements and avoid above-reservoir installation.

In all operating conditions, the drain line must flow into the reservoir below the minimum fluid level.

Notice

In certain installation positions, an influence on the adjustment or control can be expected. Gravity, dead weight and case pressure can cause minor characteristic shifts and changes in actuating time.

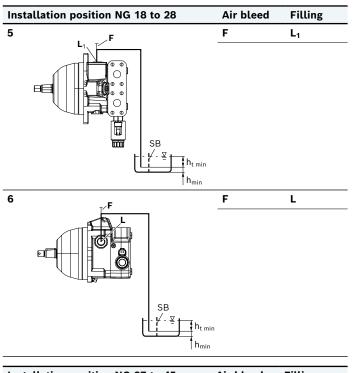

For key, see page 40.


Installation position

See the following examples **1** to **8**. Further installation positions are available upon request. Recommended installation position: **2** and **4**

Below-reservoir installation (standard)

Below-reservoir installation means that the axial piston unit is installed outside of the reservoir below the minimum fluid level.



Installation instructions for A10VE

Above-reservoir installation

Above-reservoir installation means that the axial piston unit is installed above the minimum fluid level of the reservoir.

Installation position NG 37 to 45		Air bleed	Filling
7	_	F	L
	SB		
	BB ↓ · ⊻ h		
8		F	L
	SB ↓ ↓ ↓ - · ⊻ ht min h _{min}		

Key	
F	Filling / Air bleeding
L, L ₁	Drain port
SB	Baffle (baffle plate)
h _{t min}	Minimum required immersion depth (200 mm)
h _{min}	Minimum required distance to reservoir bottom (100 mm)

Notice

Port **F** is part of the external piping and must be provided on the customer side to make filling and air bleeding easier.

Project planning notes

- The axial piston variable motor, A10VM and A10VE, is intended to be used in open and closed circuits.
- Project planning, installation and commissioning of the axial piston units requires the involvement of skilled personnel.
- Before using the axial piston unit, please read the corresponding instruction manual completely and thoroughly.
- Before finalizing your design, request a binding installation drawing.
- The specified data and notes contained herein must be observed.
- Depending on the operating conditions of the axial piston unit (working pressure, fluid temperature), the characteristic curve may shift.
- The characteristic curve may also shift due to the dither frequency or control electronics.
- Preservation: Our axial piston units are supplied as standard with preservation protection for a maximum of 12 months. If longer preservation protection is required (maximum 24 months), please specify this in plain text when placing your order. The preservation periods apply under optimal storage conditions, details of which can be found in the data sheet 90312 or the instruction manual.
- Not all versions of the product are approved for use in safety functions according to ISO 13849.
- Depending on the type of control used, electromagnetic effects can be produced when using solenoids. Use of the recommended direct current (DC) on the electromagnet does not produce any electromagnetic interference (EMI) nor is the electromagnet influenced by EMI. A possible electromagnetic interference (EMI) exists if the solenoid is supplied with modulated direct current (e.g. PWM signal). The machine manufacturer should conduct appropriate tests and take appropriate measures to ensure that other components or operators (e.g. with a pacemaker) are not affected by this potentiality.

- Pressure controllers are not safeguards against pressure overload. Be sure to add a pressure relief valve to the hydraulic system.
- For drives that are operated for a long period of time with constant rotational speed, the natural frequency of the hydraulic system can be stimulated by the excitation frequency of the pump (rotational speed frequency ×9). This can be prevented with suitably designed hydraulic lines.
- Please note the details regarding the tightening torques of port threads and other threaded joints in the instruction manual.
- Working ports:
 - The ports and fastening threads are designed for the specified maximum pressure. The machine or system manufacturer must ensure the connecting elements and lines correspond to the specified application conditions (pressure, flow, hydraulic fluid, temperature) with the necessary safety factors.
 - The service ports and function ports are only intended to accommodate hydraulic lines.

Safety instructions

- During and shortly after operation, there is a risk of burning on the axial piston unit and especially on the solenoids. Take the appropriate safety measures (e.g. by wearing protective clothing).
- Moving parts in control equipment (e.g. valve spools) can, under certain circumstances, get stuck in position as a result of contamination (e.g. contaminated hydraulic fluid, abrasion, or residual dirt from components). As a result, the hydraulic fluid flow and the build-up of torque in the axial piston unit can no longer respond correctly to the operator's specifications. Even the use of various filter elements (external or internal flow filtration) will not rule out a fault but merely reduce the risk. The machine/system manufacturer should test whether additional measures are required on the machine for the relevant application in order to bring the driven consumer into a safe position (e.g., safe stop) and make sure any measures are properly implemented.

